ENVIRONMENTAL S C I E N C E

Subrat Roy

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS4C/4344, Ansari Road, Darya Ganj, New Delhi-110002Phone: 011-23244447-48Mobile: +91-99109 09320E-mail: contact@khannabooks.comWebsite: www.khannabooks.com

Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-65-3 Book Code: DIP130EN

Environmental Science by Subrat Roy

[English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Printed in India.

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

सत्यमेव जयते

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, मारत सरकार) नेल्सन मंडेला मार्ग, बसंत कुज, नई दिल्ली–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

- AD ahre

(Anil D. Sahasrabudhe)

The author is grateful to AICTE for their meticulous planning and execution to publish the technical book for Diploma students.

I sincerely acknowledge the valuable contributions of the reviewer of the book Prof. S P Mishra, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that I state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP)-2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, I like to express my sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Subrat Roy

Preface

The book titled "Environmental Science" is an outcome of our experience in the area of environmental engineering & science. The very purpose of writing this book is to develop basic concept of environmental science in the diploma students as well as enable them to get insight into the subject. Keeping in mind the purpose of wide coverage as well as to provide essential supplementary information, we have included the topics recommended by AICTE, in a very systematic and orderly manner throughout the book. Efforts have been made to explain the fundamental concepts of the subject in the simplest possible way.

During the process of preparation of the manuscript, I have considered the various standard text books and accordingly, developed sections like subjective and multiple choice questions etc. While preparing the different sections emphasis has also been given on the basic concepts of all the topics. All the topics are supported with relevant photographs to help students understanding the topic in a better way. There are total four units in the book. First unit deals with the ecosystem, second unit is about air and noise pollution, third unit discuss about renewable sources of energy and the fourth topic focuses on solid waste management, ISO 14000 & environmental management. It is important to note that in all the units, we have included the relevant websites and a list of reference books.

The present book on "Environmental Science" is meant to provide a thorough grounding on the topics covered. This part of the environmental science will prepare students to apply the concept of various topics covered in the book to tackle the environmental challenges imposed in 21st century and address the related aroused questions. The subject matters are presented in a constructive manner which will certainly help students to guide society to maintain a pollution free eco-system.

I sincerely hope that the book will inspire the students to learn and discuss the basic concepts of environmental science and will surely contribute to the development of a solid foundation of the subject. I welcome all beneficial comments and suggestions which will contribute to the improvement of the future editions of the book. It gives me immense pleasure to place this book in the hands of the teachers and students. It was indeed an immense pleasure to work on different aspects covered in the book.

Subrat Roy

Outcome Based Education

For the implementation of an outcome based education the first requirement is to develop an outcome based curriculum and incorporate an outcome based assessment in the education system. By going through outcome based assessments, evaluators will be able to evaluate whether the students have achieved the outlined standard, specific and measurable outcomes. With the proper incorporation of outcome based education there will be a definite commitment to achieve a minimum standard for all learners without giving up at any level. At the end of the programme running with the aid of outcome based education, a student will be able to arrive at the following outcomes (as per NBA guidelines):

- **PO-1:** Basic and Discipline specific knowledge: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- **PO-2: Problem analysis:** Identify and analyse well-defined engineering problems using codified standard methods.
- **PO-3: Design/ development of solutions:** Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
- **PO-4: Engineering Tools, Experimentation and Testing:** Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- **PO-5: Engineering practices for society, sustainability and environment:** Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- **PO-6: Project Management:** Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.
- **PO-7:** Life-long learning: Ability to analyse individual needs and engage in updating in the context of technological changes.

After the completion of the course the students will be able to:

- **CO-1:** Analyse real life problems associated with the ecosystem.
- **CO-2:** Explain various types of pollution sources and its effect.
- **CO-3:** Apply various types of pollution control mechanism to curb environmental pollution.
- **CO-4:** Explain various sources of renewable energy and process of harnessing.
- **CO-5:** Explain solid waste management, ISO 14000 & Environmental management.

Course Outcomes	Expected Mapping with Programme Outcomes (1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)						
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7
CO-1	3	3	-	-	3	-	2
CO-2	3	-	-	1	3	-	2
CO-3	3	1	-	2	3	1	2
CO-4	3	-	-	2	3	1	2
CO-5	3	-	-	-	3	-	2

Abbreviations and Symbols

General Terms						
Abbreviations	Full form	Abbreviations	Full form			
Ag	Argentum/Silver	CFC	Chloroflurocarbon			
As	Arsenic	CO	Course Outcome			
ATP	Adenosine Triphosphate	DNA	Dioxy-rhibo-nucleic acid			
Au	Aurum/Gold	HC	Hydrocarbons			
С	Carbon	Hg	Hydragyrum/Mercury			
CO	Carbon Monoxide	Мо	Molybdenum			
CO ₂	Carbon Dioxide	MSW	Municipal Solid Waste			
CH4	Methane	Ni	Nickel			
Со	Cobalt	Pb	Plumbum/Lead			
Cr	Chromium	UV	Ultraviolet			
Cu	Cuprum/Copper	VoCs	Volatile Organic Carbon			
	Units Used					
Abbreviations	Full form	Abbreviations	Full form			
cm	Centimetre	mm	Millimetre			
μm	Micrometer	dB	Decibels			
μN/m²	Micro Newon/meter square	Hz	Hertz			
GW	Gigawatt	KW	Kilowatt			
MW	Megawatt	TW	Terawatt			

List of Abbreviations

Unit 1 Ecosystem

List of Photographs:

Photograph 1.1: Ecosystem Photograph 1.2: Ecosystem Photograph 1.3: Aquatic Ecosystem Photograph 1.4: Lentic and Lotic Ecosystem Photograph 1.5: Terrestrial Ecosystem Photograph 1.6: Biotic Components Photograph 1.7: Biotic and Abiotic Components Photograph 1.7: Biotic and Abiotic Components Photograph 1.8: Food Chain Photograph 1.9: Food Web Photograph 1.10: Carbon Cycle Photograph 1.11: Nitrogen Cycle Photograph 1.12: Sulphur Cycle Photograph 1.13: Phosphorous Cycle

Unit 2 Air and Noise Pollution

List of Photographs:

Photograph 2.1: Types of pollution Photograph 2.2: Pollutants Photograph 2.3: Sources of Air Pollution Photograph 2.4: Natural Sources of Air pollution Photograph 2.5: Manmade Sources of Air pollution Photograph 2.6: Catalytic converter Photograph 2.7: Sources of Noise Pollution

List of Figures:

Fig. 2.1: Typical Shaker Bag Filters Fig. 2.2: Typical Reverse air bag filter Fig. 2.3: Typical pulse jet bag filters Fig. 2.4: Typical cyclone separatorsFig. 2.5: Packed bed counter flow scrubberFig. 2.6: A schematic diagram of catalytic converter

Unit 3 Renewable Sources of Energy

List of Photographs:

Photograph 3.1: Uses of Solar Energy Photograph 3.2: Flat Plate Collector and Its Working Principle Photograph 3.3: Schematic of Solar Pond Photograph 3.4: Solar Dryer Photograph 3.5: Solar Stills Photograph 3.6: Sources of Biomass Photograph 3.7: Utilization of Biogas Photograph 3.8: Wind Energy (Windmills) Photograph 3.9: Wind Energy in India Photograph 3.10: Hydrogen Energy Photograph 3.11: Geothermal Energy

List of Figures:

Fig. 3.1: Solar Water Heater

Unit 4 Solid Waste Management, ISO 14000 and Environmental Management

List of Photographs:

Photograph 4.1: Solid Waste Generation Photograph 4.2: Biodegradable and Non- biodegradable Solid Waste Photograph 4.3: e-wastes Photograph 4.4: Biomedical Waste Photograph 4.5: Infectious Waste Photograph 4.6: Non-metallic Waste Photograph 4.7: Collection and Disposal of Solid Waste Photograph 4.8: Hazardous Waste Photograph 4.9: Concepts of Carbon Credit and Carbon Footprint

Guidelines for Teachers

To implement Outcome Based Education (OBE) knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manipulate time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level		Teacher should Check	Student should be able to	Possible Mode of Assessment
Cı	reating	Students ability to create	Design or Create	Mini project
Eva	aluating	Students ability to Justify	Argue or Defend	Assignment
An	alysing	Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
Aţ	oplying	Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
Unde	erstanding	Students ability to explain the ideas	Explain or Classify	Presentation/Seminar
Rem	embering	Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

Guidelines for Students

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows:

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

Contents

Fore	eword	iii
	nowledgment	v
Prefa	C C	vii
	come Based Education	ix
	rse Outcomes	xi
	reviations and Symbols	xii
	of Photographs and Figures	xiii
	delines for Teachers	
	delines for Students	XV
Gui	defines for Students	XVI
Uni	it 1: Ecosystem	1-23
Unit	t specifics	1
Ratio	onale	1
	requisites	2
	toutcomes	2
1.1	Introduction	3
1.2	Aquatic and terrestrial ecosystem	4
	1.2.1 Natural ecosystem	4
	1.2.2 Artificial ecosystems	7
1.3	Structure of ecosystem	7
	1.3.1 Biotic (living) components	7
	1.3.2 Abiotic (non-living) components	9
1.4	Food chain and food web	10
	1.4.1 Food Chain	10
	1.4.2 Food Web	11
1.5	Carbon, Nitrogen, Sulphur, Phosphorus cycle	12
	1.5.1 Carbon Cycle	12
	1.5.2 Nitrogen Cycle	13
	1.5.3 Sulphur Cycle	15
	1.5.4 Phosphorus Cycle	16
1.6	Global Warming	17
	1.6.1 Ozone Depletion	18
1.7	Unit Summary	19
1.8	Interesting Facts	20

1.9	Innovative Activities	21
1.10	Exercises	21
1.11	Suggested Learning Resources	22
	a) Reference Books	22
	b) Open source software and website	22
	c) Video Resources	22
Unit	t 2: Air and Noise Pollution	23-44
	specifics	23
Ratio		23
	requisites	24
	outcomes	24
2.1	Introduction	25
2.2	Definition of pollution and pollutant	25
	2.2.1 Natural and manmade sources of air pollution	28
2.3	Air Pollutants	29
	2.3.1 Particulate pollutant	30
2.4	Gaseous Pollution Control	34
	2.4.1 Absorber	34
	2.4.2 Catalytic converter	35
	2.4.3 Effects of air pollution due to Refrigerants, I.C., Boiler	36
2.5	Noise pollution	37
	2.5.1 Sources of noise pollution	37
	2.5.2 Measurement of noise pollution level	38
	2.5.3 Effects of Noise pollution	38
	2.5.4 Noise pollution (Regulation and Control) Rules, 2000	39
2.6	Unit Summary	40
2.7	Innovative Activities	41
2.8	Interesting Facts	42
2.9	Exercises	42
2.10	Suggested Learning Resources	44
	a) Reference Books	44
	b) Open source software and website	44
	c) Video Resources	44
Unit	t 3: Renewable sources of Energy	45-72
Unit	45	
Ratio	onale	45

Pre-requisites		46
Unit	Jnit outcomes	
3.1	Introduction	47
3.2	Solar Energy	47
	3.2.1 Flat Plate Collector (liquid and air)	48
	3.2.2 Theory of flat plate collector	48
	3.2.3 Importance of coating and Advanced collector	49
	3.2.4 Solar pond, Solar water heater, Solar dryer and Solar stills	49
3.3	Biomass	53
	3.3.1 Thermal characteristics of biomass as fuel	54
	3.3.2 Anaerobic digestion	55
	3.3.3 Biogas production mechanism	56
	3.3.4 Utilization and storage of biogas	57
3.4	Wind energy	59
	3.4.1 Current status and future prospects of wind energy	59
	3.4.2 Wind energy in India	60
	3.4.3 Environmental benefits and problem of wind energy	62
3.5	New Energy Sources	62
	3.5.1 Different types new energy sources	62
	3.5.2 Applications of Hydrogen energy	63
	3.5.3 Applications of Ocean energy resources	64
	3.5.4 Concept, origin and power plants of geothermal energy	64
3.6	Unit Summary	66
3.7	Innovative Activities	67
3.8	Interesting Facts	68
3.9	Exercises	69
3.10	Suggested Learning Resources	71
	a) Reference Books	71
	b) Open source software and website	71
	c) Video Resources	72
Unit	t 4: Solid Waste Management, ISO 14000 & Environmental Management	73-100
Unit	specifics	73
Ratio		73
	requisites	74
	outcomes	74
4.1	Introduction	75

4.2	Solid waste generation	75	
	4.2.1 Sources and characteristics of Municipal solid waste	76	
	4.2.2 Sources and Characteristics of e-wastes	77	
	4.2.3 Sources and Characteristics of Biomedical waste	79	
4.3	Metallic wastes and Non-Metallic wastes	80	
	4.3.1 Non-metallic wastes from industries	80	
4.4	Collection and disposal of MSW	82	
	4.4.1 Collection of Municipal Solid Waste (MSW)	82	
	4.4.2 Disposal of Municipal Solid Waste (MSW)	83	
	4.4.3 3R Principles	83	
	4.4.4 Energy recovery	84	
	4.4.5 Sanitary landfill	84	
	4.4.6 Hazardous waste	85	
4.5	Air quality act 2004	86	
	4.5.1 Air pollution control act 1981	87	
	4.5.2 The Water (Prevention and Control of Pollution) act 1974	87	
4.6	Structure and role of Central and State Pollution Control Board	88	
	4.6.1 Organisation of Central Pollution control Board	88	
	4.6.2 Functions of the Central Board at the National Level	88	
	4.6.3 Structure and Role of State Pollution Control Board	89	
	4.6.4 Functions of the Central Board as State Boards for the Union Territories	89	
4.7	Carbon Footprint and Carbon Credit	90	
	4.7.1 Concept of Carbon Credit	91	
4.8	Environmental management in fabrication industry	91	
4.9	ISO14000	92	
4.10	Unit Summary	92	
4.11	Interesting Facts	94	
4.12	Innovative Activities	95	
4.13	Exercises	95	
4.14	Suggested Learning Resources	96	
	a) Reference Books	96	
	<i>b)</i> Open source software and website	97	
	c) Video Resources	97	
Imp	ortant Day Related to Environment	98	
	CO and PO Attainment Table		
Inde	x	99-100	